

nag_bessel_j0 (s17aec)

1. Purpose

nag_bessel_j0 (s17aec) returns the value of the Bessel function $J_0(x)$.

2. Specification

```
#include <nag.h>
#include <nags.h>

double nag_bessel_j0(double x, NagError *fail)
```

3. Description

The function evaluates the Bessel function of the first kind, $J_0(x)$.

The approximation is based on Chebyshev expansions.

For x near zero, $J_0(x) \simeq 1$. This approximation is used when x is sufficiently small for the result to be correct to **machine precision**.

For very large x , it becomes impossible to provide results with any reasonable accuracy (see Section 6.1), hence the function fails. Such arguments contain insufficient information to determine the phase of oscillation of $J_0(x)$; only the amplitude, $\sqrt{2/\pi|x|}$, can be determined and this is returned. The range for which this occurs is roughly related to the **machine precision**; the function will fail if $|x| \gtrsim 1/\text{machine precision}$.

4. Parameters

x

Input: the argument x of the function.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_REAL_ARG_GT

On entry, x must not be greater than $\langle\text{value}\rangle$: $x = \langle\text{value}\rangle$.

x is too large, the function returns the amplitude of the J_0 oscillation, $\sqrt{2/\pi|x|}$.

6. Further Comments

6.1. Accuracy

Let δ be the relative error in the argument and E be the absolute error in the result. (Since $J_0(x)$ oscillates about zero, absolute error and not relative error is significant.)

If δ is somewhat larger than the **machine precision** (e.g. if δ is due to data errors etc.), then E and δ are approximately related by $E \simeq |xJ_1(x)|\delta$ (provided E is also within machine bounds).

However, if δ is of the same order as **machine precision**, then rounding errors could make E slightly larger than the above relation predicts.

For very large x , the above relation ceases to apply. In this region, $J_0(x) \simeq \sqrt{2/\pi|x|} \cos(x - \pi/4)$. The amplitude $\sqrt{2/\pi|x|}$ can be calculated with reasonable accuracy for all x , but $\cos(x - \pi/4)$ cannot. If $x - \pi/4$ is written as $2N\pi + \theta$ where N is an integer and $0 \leq \theta < 2\pi$, then $\cos(x - \pi/4)$ is determined by θ only. If $x \gtrsim \delta^{-1}$, θ cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of, the inverse of the **machine precision**, it is impossible to calculate the phase of $J_0(x)$ and the function must fail.

6.2. References

Abramowitz M and Stegun I A (1968) *Handbook of Mathematical Functions* Dover Publications, New York ch 9 p 358.
 Clenshaw C W (1962) *Mathematical Tables, Chebyshev series for mathematical functions* National Physical Laboratory H.M.S.O. 5.

7. See Also

nag_bessel_j1 (s17afc)

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_bessel_j0(s17aec) Example Program
 *
 * Copyright 1990 Numerical Algorithms Group.
 *
 * Mark 2 revised, 1992.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

main()
{
    double x, y;

    /* Skip heading in data file */
    Vscanf("%*[^\n]");
    Vprintf("s17aec Example Program Results\n");
    Vprintf(" x y\n");
    while (scanf("%lf", &x) != EOF)
    {
        y = s17aec(x, NAGERR_DEFAULT);
        Vprintf("%12.3e%12.3e\n", x, y);
    }
    exit(EXIT_SUCCESS);
}
```

8.2. Program Data

```
s17aec Example Program Data
0.0
0.5
1.0
3.0
6.0
8.0
10.0
-1.0
1000.0
```

8.3. Program Results

```
s17aec Example Program Results
      x          y
0.000e+00  1.000e+00
5.000e-01  9.385e-01
1.000e+00  7.652e-01
3.000e+00  -2.601e-01
6.000e+00  1.506e-01
8.000e+00  1.717e-01
1.000e+01  -2.459e-01
-1.000e+00  7.652e-01
1.000e+03  2.479e-02
```
